LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generic User Behavior: A User Behavior Similarity-Based Recommendation Method.

Photo by ldxcreative from unsplash

Recommender system (RS) plays an important role in Big Data research. Its main idea is to handle huge amounts of data to accurately recommend items to users. The recommendation method… Click to show full abstract

Recommender system (RS) plays an important role in Big Data research. Its main idea is to handle huge amounts of data to accurately recommend items to users. The recommendation method is the core research content of the whole RS. However, the existing recommendation methods still have the following two shortcomings: (1) Most recommendation methods use only one kind of information about the user's interaction with items (such as Browse or Purchase), which makes it difficult to model complete user preference. (2) Most mainstream recommendation methods only consider the final consistency of recommendation (e.g., user preferences) but ignore the process consistency (e.g., user behavior), which leads to the biased final result. In this article, we propose a recommendation method based on the Entity Interaction Knowledge Graph (EIKG), which draws on the idea of collaborative filtering and innovatively uses the similarity of user behaviors to recommend items. The method first extracts fact triples containing interaction relations from relevant data sets to generate the EIKG; then embeds the entities and relations in the EIKG; finally, uses link prediction techniques to recommend items for users. The proposed method is compared with other recommendation methods on two publicly available data sets, Scholat and Lizhi, and the experimental result shows that it exceeds the state of the art in most metrics, verifying the effectiveness of the proposed method.

Keywords: recommendation method; recommendation; user behavior

Journal Title: Big data
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.