Modern genomic and metabolomic tools have provided the possibility of generating and interrogating large datasets that can provide answers to previously imponderable taxonomic, evolutionary, ecological, and physiological questions. However, the… Click to show full abstract
Modern genomic and metabolomic tools have provided the possibility of generating and interrogating large datasets that can provide answers to previously imponderable taxonomic, evolutionary, ecological, and physiological questions. However, the curatorial tools needed to provide and maintain the relevant biological resources on which new knowledge can be built have not kept pace with this meteoric rise in scientific capacity, its associated activity, or the huge increase in published science. The availability of biological material of guaranteed identity and quality in Biological Resource Centers is fundamental for scientific research, but it crucially depends on there being adequate preservation/maintenance methods that are capable of ensuring phenotypic, genotypic, and functional security of the biological material(s). This article highlights the challenges to the long-term maintenance of genetic resources in general, focusing specifically on the issues associated with the maintenance of a large collection of strains of the ecologically significant diatom Skeletonema marinoi. This research collection, held at the Department of Marine Sciences, University of Gothenburg, has been systematically tested for its capacity to survive cryopreservation. A method, involving incubation in the dark for 20-24 hours before cryopreservation, followed by cryoprotection employing 10% dimethysulphoxide (DMSO) and conventional cooling in a passive cooler, before plunging into liquid nitrogen was successfully applied to ∼80% of the strains tested. In addition, the growth characteristics of exemplar strains were confirmed after storage.
               
Click one of the above tabs to view related content.