LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anti-Fragmentation of Resting-State Functional Magnetic Resonance Imaging Connectivity Networks with Node-Wise Thresholding

Photo from wikipedia

Functional magnetic resonance imaging (fMRI)-based functional connectivity networks are often constructed by thresholding a correlation matrix of nodal time courses. In a typical thresholding approach known as hard thresholding, a… Click to show full abstract

Functional magnetic resonance imaging (fMRI)-based functional connectivity networks are often constructed by thresholding a correlation matrix of nodal time courses. In a typical thresholding approach known as hard thresholding, a single threshold is applied to the entire correlation matrix to identify edges representing superthreshold correlations. However, hard thresholding is known to produce a network with uneven allocation of edges, resulting in a fragmented network with a large number of disconnected nodes. It is suggested that an alternative network thresholding approach, node-wise thresholding, is able to overcome these problems. To examine this, various network characteristics were compared between networks constructed by hard thresholding and node-wise thresholding, with publicly available resting-state fMRI data from 123 healthy young subjects. It was found that networks constructed with hard thresholding included a large number of disconnected nodes, while such network fragmentation was not observed in networks formed with node-wise thresholding. Moreover, in hard thresholding networks, fragmentized modular organization was observed, characterized by a large number of small modules. On the contrary, such modular fragmentation was not observed in node-wise thresholding networks, producing modules that were robust at any threshold and highly consistent across subjects. These results indicate that node-wise thresholding may lead to less fragmented networks. Moreover, node-wise thresholding enables robust characterization of network properties without much influence by the selection of a threshold.

Keywords: network; connectivity; node wise; hard thresholding; wise thresholding

Journal Title: Brain connectivity
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.