INTRODUCTION Transcranial pulsed current stimulation (tPCS) could be used to deliver electrical pulses at different frequencies to entrain the cortical neurons of the brain. Frequency dependence of these pulses in… Click to show full abstract
INTRODUCTION Transcranial pulsed current stimulation (tPCS) could be used to deliver electrical pulses at different frequencies to entrain the cortical neurons of the brain. Frequency dependence of these pulses in the induction of changes in corticospinal excitability (CSE) has not been reported. OBJECTIVE We aimed to assess the effect of anodal tPCS (a-tPCS) at theta (4 Hz), and gamma (75 Hz) frequencies on CSE as assessed by the peak-to-peak amplitude of transcranial magnetic stimulation (TMS) induced motor evoked potentials (MEPs) and motor performance. METHOD In a randomized double-blinded sham-controlled cross over design study, seventeen healthy participants attended three experimental sessions and received either a-tPCS at 4 Hz, 75 Hz, or sham a-tPCS with 1.5 mA for 15 min. The amplitude of TMS induced resting MEPs and time for completion of the grooved pegboard test were recorded at baseline, immediately after, and 30-min after a-tPCS. RESULTS Both a-tPCS at 75 Hz and 4 Hz showed significantly increased CSE compared to sham. The a-tPCS at 75 Hz induced significantly higher CSE changes compared to 4 Hz. There was a significant increase in intracortical facilitation and a significant reduction in short-interval intra-cortical inhibition with both 4 and 75 Hz stimulation. However, the inhibition and facilitation did not correlate with CSE. Motor performance was unaffected by the interventions. CONCLUSION The high CSE changes in M1 in a-tPCS at 75 Hz provides an initial understanding of the frequency-specific effect of a-tPCS. More research is needed to establish this concept and to assess its behavioural relevance.
               
Click one of the above tabs to view related content.