LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive and maladaptive brain functional network reorganization after stroke in hemianopia patients: an EEG-tracking study.

Photo by dulhiier from unsplash

OBJECTIVE Hemianopia following occipital stroke is believed to be mainly due to local damage at or near the lesion site. Yet, MRI studies suggest functional connectivity network (FCN) reorganization also… Click to show full abstract

OBJECTIVE Hemianopia following occipital stroke is believed to be mainly due to local damage at or near the lesion site. Yet, MRI studies suggest functional connectivity network (FCN) reorganization also in distant brain regions. Because it is unclear if reorganization is adaptive or maladaptive, compensating for, or aggravating vision loss, we characterized FCNs electrophysiologically to explore local and global brain plasticity and correlated FCN reorganization with visual performance. METHODS Resting-state EEG was recorded in chronic, unilateral stroke patients and healthy age-matched controls (n=24 each). The correlation of oscillating EEG activity was calculated with the imaginary part of coherence between pairs of interested regions, and FCN graph theory metrics (degree, strength, clustering coefficient) were correlated with stimulus detection and reaction time. RESULTS Stroke brains showed altered FCNs in the alpha- and beta-band in numerous occipital, temporal and frontal brain structures. On a global level, FCN had a less efficient network organization while on the local level node networks reorganized especially in the intact hemisphere. Here, the occipital network was 58% more rigid (with a more "regular" network structure) while the temporal network was 32% more efficient (showing greater "small-worldness"), both of which correlated with worse or better visual processing, respectively. CONCLUSIONS Occipital stroke is associated with both local and global FCN reorganization, but this can be both, adaptive and maladaptive. We propose that the more "regular" FCN structure in the intact visual cortex indicates maladaptive plasticity where less processing efficacy with reduced signal/noise ratio may cause perceptual deficits in the intact visual field. In contrast, reorganization in intact temporal brain regions is presumably adaptive, possibly supporting enhanced peripheral movement perception.

Keywords: fcn reorganization; adaptive maladaptive; network; reorganization; brain

Journal Title: Brain connectivity
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.