LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vitamin D Supplementation Prevents Placental Ischemia Induced Endothelial Dysfunction by Downregulating Placental Soluble FMS-Like Tyrosine Kinase-1.

Photo by mochiel from unsplash

Maternal vitamin D deficiency in pregnancy has been associated with an increased risk of preeclampsia. Vascular endothelial dysfunction is a major phenotype of pregnancies with preeclampsia, contributing to increased maternal… Click to show full abstract

Maternal vitamin D deficiency in pregnancy has been associated with an increased risk of preeclampsia. Vascular endothelial dysfunction is a major phenotype of pregnancies with preeclampsia, contributing to increased maternal hypertension and proteinuria. We sought to determine whether vitamin D supplementation would alleviate preeclampsia associated endothelial dysfunction and explore the underlying mechanism using the reduced uterine perfusion pressure (RUPP) rat model. RUPP operated rats were supplemented with 1,25(OH)2D (RUPP+VD) on day 1, 7, and 14 of pregnancy by subcutaneous injection. On day 19 of pregnancy, after the measurement of blood pressure and urine collection, maternal blood serum and placenta samples were collected. 1,25(OH)2D treatment significantly improved endothelial dysfunction by reducing apoptosis and increasing nitric oxide (NO) production in blood vessels of RUPP operated rats compared to untreated RUPP rats. 1,25(OH)2D significantly down-regulated the expression of placental soluble FMS-like tyrosine kinase-1 (sFlt-1) in RUPP rats. Furthermore, the circulating sFlt-1 levels in maternal serum were positively correlated with the expression of placental sFlt-1 and were restored to a normal pregnant level by 1,25(OH)2D treatment in RUPP rats. Incubation of endothelial cell line with rat serum from RUPP+VD group significantly increased NO production and decreased caspase-3 activity compared with serum from untreated RUPP rats. Moreover, neutralization of sFlt-1 using the specific antibody mimicked the effect of 1,25(OH)2D, which abolished the deleterious effect of RUPP rat's serum on NO production and apoptosis. These results suggest that vitamin D supplementation is protective against RUPP induced endothelial dysfunction by downregulating placental sFlt-1, which can possibly alleviate preeclampsia associated symptoms.

Keywords: rupp; vitamin supplementation; sflt; endothelial dysfunction

Journal Title: DNA and cell biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.