Streptozotocin (STZ), a glucose analog, induces diabetes in experimental animals by inducing preferential cytotoxicity in pancreatic beta cells. We investigated whether STZ reduced the production of intracellular insulin through autophagy… Click to show full abstract
Streptozotocin (STZ), a glucose analog, induces diabetes in experimental animals by inducing preferential cytotoxicity in pancreatic beta cells. We investigated whether STZ reduced the production of intracellular insulin through autophagy in insulinoma INS-1E cells. Typically, 2 mM STZ treatment for 24 h significantly decreased cell survival. STZ treatment led to significant decrease in phospho-AMP-activated protein kinase (p-AMPK) level; reduction in levels of phospho-protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α); significant reduction in levels of p85α, p110, phospho-serine and threonine kinase/protein kinase B (p-Akt/PKB) (Ser473), phospho-extracellular-regulated kinase (p-ERK), and phospho-mammalian target of rapamycin (p-mTOR); increase in levels of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase; decrease in B-cell lymphoma 2 (Bcl-2) expression; increase in Bcl-2-associated X protein (Bax) expression; increase in levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1; and reduction in production of intracellular insulin. These results suggest that insulin synthesis during STZ treatment involves autophagy in INS-1E cells and, subsequently, results in a decrease in intracellular production of insulin.
               
Click one of the above tabs to view related content.