LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Usage of RePlay as a Take-Home System to Support High-Repetition Motor Rehabilitation After Neurological Injury.

Photo from wikipedia

Stroke is a leading cause of chronic motor disability. While physical rehabilitation can promote functional recovery, several barriers prevent patients from receiving optimal rehabilitative care. Easy access to at-home rehabilitative… Click to show full abstract

Stroke is a leading cause of chronic motor disability. While physical rehabilitation can promote functional recovery, several barriers prevent patients from receiving optimal rehabilitative care. Easy access to at-home rehabilitative tools could increase patients' ability to participate in rehabilitative exercises, which may lead to improved outcomes. Toward achieving this goal, we developed RePlay: a novel system that facilitates unsupervised rehabilitative exercises at home. RePlay leverages available consumer technology to provide a simple tool that allows users to perform common rehabilitative exercises in a gameplay environment. RePlay collects quantitative time series force and movement data from handheld devices, which provide therapists the ability to quantify gains and individualize rehabilitative regimens. RePlay was developed in C# using Visual Studio. In this feasibility study, we assessed whether participants with neurological injury are capable of using the RePlay system in both a supervised in-office setting and an unsupervised at-home setting, and we assessed their adherence to the unsupervised at-home rehabilitation assignment. All participants were assigned a set of 18 games and exercises to play each day. Participants produced on average 698 ± 36 discrete movements during the initial 1 hour in-office visit. A subset of participants who used the system at home produced 1593 ± 197 discrete movements per day. Participants demonstrated a high degree of engagement while using the system at home, typically completing nearly double the number of assigned exercises per day. These findings indicate that the open-source RePlay system may be a feasible tool to facilitate access to rehabilitative exercises and potentially improve overall patient outcomes.

Keywords: system; neurological injury; rehabilitative exercises; replay; rehabilitation; home

Journal Title: Games for health journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.