Aims: Folate metabolism plays a critical role in DNA methylation and synthesis. Polymorphisms in folate metabolism may affect enzyme activities and thereby affect the cancer risk. Methionine synthase (MTR) and… Click to show full abstract
Aims: Folate metabolism plays a critical role in DNA methylation and synthesis. Polymorphisms in folate metabolism may affect enzyme activities and thereby affect the cancer risk. Methionine synthase (MTR) and methionine synthase reductase (MTRR) are critical enzymes for the folate cycle. In this study, possible associations between genetic variabilities in MTR and MTRR and susceptibility to lung cancer (LC) were investigated in a Turkish population. Methods: A case–control study with 193 LC cases and 199 noncancerous controls was conducted. DNA was extracted from leukocytes using the high pure polymerase chain reaction (PCR) template preparation kit. The MTR 2756 A>G (rs1805087), MTRR 524 C > T (rs1532268), and MTRR 66 A>G (rs1801394) genotypes were determined using PCR-restriction fragment length polymorphism (PCR-RFLP) assays. The genotype and haplotype analyses of these polymorphisms were performed using SPSS 21 and Haploview 4.2, respectively. Results: An association between the MTRR A66G polymorphis...
               
Click one of the above tabs to view related content.