The detailed characterization of biological nanoparticles is of paramount importance for various industrial sectors, as for production of viral therapeutics. More recently, technologies that allow real-time quantification with simultaneous sizing… Click to show full abstract
The detailed characterization of biological nanoparticles is of paramount importance for various industrial sectors, as for production of viral therapeutics. More recently, technologies that allow real-time quantification with simultaneous sizing and determination of surface potentials of virus particles in solution have been developed. In the present study, nanoparticle tracking analysis (NTA) was applied to determine the size and the zeta potential of human Adenovirus type 5 (AdV5), one the most frequently used therapeutic/oncolytic agents and viral vectors. Virus aggregation was detected, and the kinetics of the dissolution of virus aggregates were studied in real-time. In addition, advanced fluorescence detection of AdV5 was performed enabling the measurements in matrices and discrimination of viral subpopulations. It was shown that NTA is an efficient approach for investigating infectious viruses in a live viewing mode. Consequently, NTA provides a promising methodology for virus particle detection and analysis in real-time beyond assays requiring nucleic acids or infectivity.
               
Click one of the above tabs to view related content.