Antiviral DNA vaccines are a novel strategy in the vaccine development field, which basically consists of the administration of expression vectors coding viral antigen sequences into the host's cells. Targeting… Click to show full abstract
Antiviral DNA vaccines are a novel strategy in the vaccine development field, which basically consists of the administration of expression vectors coding viral antigen sequences into the host's cells. Targeting of conserved viral epitopes by antibody fragments specific to activating cell surface co-receptor molecules on antigen-presenting cells could be an alternative approach for inducing protective immunity. It has been shown that FcγRI on human monocytes enhances antigen presentation in vivo. Various DNA constructs, encoding a Single-chain variable antibodies (scFv) from mouse anti-human FcγRI monoclonal antibody, coupled to a sequence encoding a T- and B-cell epitope-containing influenza A virus hemagglutinin inter-subunit peptide were inserted into the eukaryotic expression vector system pTriEx-3 Neo. The constructed chimeric DNA molecules were expressed by transfected Chinese hamster ovary cells and the ability of the engineered proteins to interact with FcγRI-expressing cells was confirmed by flow cytometry. The fusion protein induced a strong signal transduction on human monocytes via FcγRI. The expression vector pTriEx-3 Neo containing the described construct was used as a naked DNA vaccine and introduced directly to experimental humanized NOD SCID gamma mice with or without boosting with the expressed fusion protein. Immunization with the generated DNA chimeric molecules and prime-boost with the expressed recombinant proteins induced significant serum levels of anti-influenza immunoglobulin G antibodies and strong cytotoxic T lymphocyte activity against influenza virus-infected cells in humanized animals.
               
Click one of the above tabs to view related content.