LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Human papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes.

Photo from wikipedia

CRISPR/Cas9 technology enables targeted gene editing, but cancer gene therapy with this approach requires improvements to enable safe and efficient delivery of CRISPR/Cas9 to tumors. We developed and evaluated a… Click to show full abstract

CRISPR/Cas9 technology enables targeted gene editing, but cancer gene therapy with this approach requires improvements to enable safe and efficient delivery of CRISPR/Cas9 to tumors. We developed and evaluated a self-assembled liposome to selectively deliver CRISPR/Cas9 to cancer tissues. Our CRISPR/Cas9 system effectively inhibited proliferation of Human papillomavirus 16-positive cervical cancer cells and induced apoptosis by inactivating the HR-HPV16E6/E7 oncogene. Based on this system, we prepared a long-circulating pH-sensitive cationic nano- liposome complex with a high cell targeting and gene knockout rate. Intratumoral injection of cationic liposomes targeted to splicing HPV16 E6/E7 in nude mice significantly inhibited tumor growth without significant toxicity in vivo. Liposomes that targeted HPV16 E6/E7 splicing were established as a basis for treatment of HPV16-positive cervical cancer drug candidates. Our study demonstrates that this liposome offers an efficient delivery system for nonviral gene editing, adding to the armamentarium of gene editing tools to advance safe and effective precision medicine-based cancer therapeutics.

Keywords: crispr cas9; sensitive cationic; cationic liposomes; human papillomavirus; cancer; gene

Journal Title: Human gene therapy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.