Obesity has become a serious global public health problem, and cardiomyopathy caused by obesity has been paid more and more attention in recent years. As an important protein involved in… Click to show full abstract
Obesity has become a serious global public health problem, and cardiomyopathy caused by obesity has been paid more and more attention in recent years. As an important protein involved in glucose and lipid metabolism, G protein-coupled receptor 40 (GPR40) exerts cardioprotective effects in some disease models. The aim of this study was to explore whether GPR40 plays a protective role in obesity-induced cardiomyopathy. We established an obesity model by feeding rats with a high-fat diet, and H9c2 cells were stimulated with palmitic acid to mimic high-fat stimulation. Overexpression of GPR40 was achieved by infection with lentivirus or cDNA plasmids. Obesity-induced cardiac injury models exhibit cardiac dysfunction, myocardial hypertrophy and collagen accumulation, accompanied by increased inflammation, oxidative stress and apoptosis. However, GPR40 overexpression attenuated these alterations. Its anti-inflammatory effect may be through inhibiting the nuclear factor-κB pathway, and the anti-oxidative stress may be through activating the nuclear transcription factor erythroid 2-related factor 2 pathway. For the mechanism of GPR40 against obese cardiomyopathy, GPR40 overexpression not only activated the sirtuin 1 (SIRT1)- liver kinase B1 (LKB1)- AMP-activated protein kinase (AMPK) pathway, but also enhanced the binding of SIRT1 to LKB1. The anti-fibrotic, anti-inflammatory, anti-oxidative stress and anti-apoptotic effects of GPR40 overexpression were inhibited by SIRT1 small interfering RNA. In conclusion, GPR40 overexpression protects against obesity-induced cardiac injury in rats, possibly through the SIRT1- LKB1- AMPK pathway.
               
Click one of the above tabs to view related content.