Atherosclerosis (AS) is a chronic inflammatory disease associated with lipids deposition which could be converted into acute clinical events by thrombosis or plaque rupture. Adipose-derived mesenchymal stem cells (ADSCs) encapsulated… Click to show full abstract
Atherosclerosis (AS) is a chronic inflammatory disease associated with lipids deposition which could be converted into acute clinical events by thrombosis or plaque rupture. Adipose-derived mesenchymal stem cells (ADSCs) encapsulated repair units could be an effective cure for the treatment of AS patients. Here, we encapsulate human ADSCs in collagen microspheres to fabricate stem cell repair units. Besides, we show that encapsulation in collagen microspheres and cultured in vitro for 14 days maintain the viability and stemness of human ADSCs. Moreover, we generate AS progression model and niche in vitro by combining hyperlipemia serum of AS patients with AS cell models. We further systematically demonstrate that human ADSCs-based microspheres could ameliorate AS progression by inhibiting oxidative stress injure, cell apoptosis, endothelial dysfunction, inflammation, and lipid accumulation. In addition, we perform transcriptomic analysis and functional studies to demonstrate how human ADSCs (3D cultured in microspheres) respond to AS niche compared with healthy microenvironment. These findings reveal a role for ADSCs-based microspheres in the treatment of AS and provide new ideas for stem cell therapy in cardiovascular disease. The results may have implications for improving the efficiency of human ADSC therapies by illuminating the mechanisms of human ADSCs exposed in special pathological niche.
               
Click one of the above tabs to view related content.