LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Control-Oriented Models for Hyperelastic Soft Robots Through Differential Geometry of Curves.

Photo from wikipedia

The motion complexity and use of exotic materials in soft robotics call for accurate and computationally efficient models intended for control. To reduce the gap between material and control-oriented research,… Click to show full abstract

The motion complexity and use of exotic materials in soft robotics call for accurate and computationally efficient models intended for control. To reduce the gap between material and control-oriented research, we build upon the existing piece-wise constant curvature framework by incorporating hyperelastic and viscoelastic material behavior. In this work, the continuum dynamics of the soft robot are derived through the differential geometry of spatial curves, which are then related to finite-element data to capture the intrinsic geometric and material nonlinearities. To enable fast simulations, a reduced-order integration scheme is introduced to compute the dynamic Lagrangian matrices efficiently, which in turn allows for real-time (multilink) models with sufficient numerical precision. By exploring the passivity and using the parameterization of the hyperelastic model, we propose a passivity-based adaptive controller that enhances robustness toward material uncertainty and unmodeled dynamics-slowly improving their estimates online. As a study-case, a soft robot manipulator is developed through additive manufacturing, which shows good correspondence with the dynamic model under various conditions, for example, natural oscillations, forced inputs, and under tip-loads. The solidity of the approach is demonstrated through extensive simulations, numerical benchmarks, and experimental validations.

Keywords: robotics; differential geometry; control; geometry; control oriented; oriented models

Journal Title: Soft robotics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.