LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antiviral Effect of IDO in Mouse Fibroblast Cells During Influenza Virus Infection.

Photo from wikipedia

While upregulation of 2,3-dioxygenase (IDO) accompanied by degradation of tryptophan along the kynurenine pathway have been reported to exert antimicrobial effects against a wide range of infectious agents, its role… Click to show full abstract

While upregulation of 2,3-dioxygenase (IDO) accompanied by degradation of tryptophan along the kynurenine pathway have been reported to exert antimicrobial effects against a wide range of infectious agents, its role in the replication of influenza A virus remains uncertain. We performed experiments using influenza A/WSN/33 virus infection of mouse fibroblast cell-line (NIH-3T3) to study the effects of IDO on viral replication. Influenza infection resulted in prominent elevations of transcripts encoding IDO, interferon (IFN)-β, and segment 8 of the virus in NIH-3T3 cells. Introduction of siRNA targeted against IDO followed by infection resulted in further increased levels of viral RNA without altering IFN-β expression. Inhibition of IDO during the infection also resulted in reduction of virus-driven upregulation of 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), but not kynurenine 3-monooxygenase (KMO), which are enzymes downstream in the kynurenine pathway. Thus, induction of IDO appears to contribute to limiting replication of the WSN/33 strain of influenza A virus in murine NIH-3T3 cells.

Keywords: mouse fibroblast; ido; infection; influenza virus; virus infection

Journal Title: Viral immunology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.