The lung is an important line of defense that is exposed to respiratory infectious pathogens, including viruses. Lung epithelial cells and/or alveolar macrophages are initially targeted by respiratory viruses. Once… Click to show full abstract
The lung is an important line of defense that is exposed to respiratory infectious pathogens, including viruses. Lung epithelial cells and/or alveolar macrophages are initially targeted by respiratory viruses. Once respiratory viruses invade the cells of the lung, innate immunity is activated to inhibit viral replication. Innate immune signaling also activates virus-specific adaptive immune responses. The helper T cells play pivotal roles in the humoral and cellular adaptive immune responses. Helper T cells are categorized into several distinct subsets (e.g., TH1, TH2, TFH, TH17, and Treg), differentiated by their corresponding signature cytokine production profiles. Helper T cells migrate into the airways and the lung after respiratory virus infections. The behavior of the helper T cells differs with each respiratory virus-in some cases, the response is beneficial; in other cases, it is harmful. Here, the general mechanisms underlying helper T cell responses to viral infections are summarized, and functions and reactions of the helper T cells against some respiratory viral infections are discussed. In influenza virus infections, TH1 cells, which regulate the cytotoxic T lymphocytes and IgG2 responses, are efficiently activated. TFH cells required for highly specific and memory humoral responses are also activated on influenza infections. In infections with respiratory syncytial virus and rhinovirus, TH2 cells develop in the lung and contribute to pathogenesis. In many cases, Treg cells inhibit excessive virus-specific T cell responses that can contribute to viral pathogenicity.
               
Click one of the above tabs to view related content.