There are hundreds of coronaviruses, most of which circulate among animals, yet there are seven types that infect humans. Three of them can cause severe acute respiratory illness-SARS-CoV, SARS-CoV-2, and… Click to show full abstract
There are hundreds of coronaviruses, most of which circulate among animals, yet there are seven types that infect humans. Three of them can cause severe acute respiratory illness-SARS-CoV, SARS-CoV-2, and MERS-CoV. Other HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 usually cause only mild to moderate upper respiratory tract infections. These four coronaviruses are called seasonal, because they are continuously circulating among human population and are responsible for up to 30% of all respiratory tract infections. Genetically, these low-pathogenic types are related to SARS-CoV-2. That is why questions concerning the cross-reactivity and cross-neutralization between antibodies against different types of coronaviruses have been raised. We addressed these questions by using enzyme-linked immunosorbent assays and targeted next-generation sequencing (NGS). We established the upper respiratory infection etiology for three patients who had been vaccinated with Sputnik V and tested positive on anti-SARS-CoV-2 antibodies. The symptoms included sore throat, nasal congestion, and myalgia. Their blood serum was analyzed for anti-SARS-CoV-2 antibodies in dynamics: before vaccination, and after the first and second dose of the vaccine. After the second dose, all patients were positive for IgG antibodies against SARS-CoV-2. The targeted NGS panel sequencing data analysis showed that these patients were infected with common coronavirus HCoV-OC43. These results suggest that S protein-targeted vaccine-induced antibodies against SARS-CoV-2 are not protective against seasonal coronavirus HCoV-OC43.
               
Click one of the above tabs to view related content.