LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Representation growth of compact linear groups

Photo by absolut from unsplash

We study the representation growth of simple compact Lie groups and of $\mathrm{SL}_n(\mathcal{O})$, where $\mathcal{O}$ is a compact discrete valuation ring, as well as the twist representation growth of $\mathrm{GL}_n(\mathcal{O})$.… Click to show full abstract

We study the representation growth of simple compact Lie groups and of $\mathrm{SL}_n(\mathcal{O})$, where $\mathcal{O}$ is a compact discrete valuation ring, as well as the twist representation growth of $\mathrm{GL}_n(\mathcal{O})$. This amounts to a study of the abscissae of convergence of the corresponding (twist) representation zeta functions. We determine the abscissae for a class of Mellin zeta functions which include the Witten zeta functions. As a special case, we obtain a new proof of the theorem of Larsen and Lubotzky that the abscissa of Witten zeta functions is $r/\kappa$, where $r$ is the rank and $\kappa$ the number of positive roots. We then show that the twist zeta function of $\mathrm{GL}_n(\mathcal{O})$ exists and has the same abscissa of convergence as the zeta function of $\mathrm{SL}_n(\mathcal{O})$, provided $n$ does not divide $\text{char}\,{\mathcal{O}}$. We compute the twist zeta function of $\mathrm{GL}_2(\mathcal{O})$ when the residue characteristic $p$ of $\mathcal{O}$ is odd, and approximate the zeta function when $p=2$ to deduce that the abscissa is $1$. Finally, we construct a large part of the representations of $\mathrm{SL}_2(\mathbb{F}_q[[t]])$, $q$ even, and deduce that its abscissa lies in the interval $[1,\,5/2]$.

Keywords: representation; zeta; mathrm mathcal; zeta functions; representation growth

Journal Title: Transactions of the American Mathematical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.