In this paper we analyze the capacitary potential due to a charged body in order to deduce sharp analytic and geometric inequalities, whose equality cases are saturated by domains with… Click to show full abstract
In this paper we analyze the capacitary potential due to a charged body in order to deduce sharp analytic and geometric inequalities, whose equality cases are saturated by domains with spherical symmetry. In particular, for a regular bounded domain $\Omega \subset \mathbb{R}^n$, $n\geq 3$, we prove that if the mean curvature $H$ of the boundary obeys the condition $$ - \bigg[ \frac{1}{\text{Cap}(\Omega)} \bigg]^{\frac{1}{n-2}} \leq \frac{H}{n-1} \leq \bigg[ \frac{1}{\text{Cap}(\Omega)} \bigg]^{\frac{1}{n-2}} , $$ then $\Omega$ is a round ball.
               
Click one of the above tabs to view related content.