LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The structure of random automorphisms of countable structures

Photo from wikipedia

In order to understand the structure of the `typical' element of an automorphism group, one has to study how large the conjugacy classes of the group are. When typical is… Click to show full abstract

In order to understand the structure of the `typical' element of an automorphism group, one has to study how large the conjugacy classes of the group are. When typical is meant in the sense of Baire category, a complete description of the size of the conjugacy classes has been given by Kechris and Rosendal. Following Dougherty and Mycielski we investigate the measure theoretic dual of this problem, using Christensen's notion of Haar null sets. When typical means random, that is, almost every with respect to this notion of Haar null sets, the behavior of the automorphisms is entirely different from the Baire category case. In this paper, we generalize the theorems of Dougherty and Mycielski about $S_\infty$ to arbitrary automorphism groups of countable structures isolating a new model theoretic property, the Cofinal Strong Amalgamation Property. As an application we show that a large class of automorphism groups can be decomposed into the union of a meager and a Haar null set.

Keywords: automorphisms countable; random automorphisms; structure random; haar null; structure; countable structures

Journal Title: Transactions of the American Mathematical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.