LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Davies’ method for heat-kernel estimates: An extension to the semi-elliptic setting

Photo from wikipedia

We consider a class of constant-coefficient partial differential operators on a finite-dimensional real vector space which exhibit a natural dilation invariance. Typically, these operators are anisotropic, allowing for different degrees… Click to show full abstract

We consider a class of constant-coefficient partial differential operators on a finite-dimensional real vector space which exhibit a natural dilation invariance. Typically, these operators are anisotropic, allowing for different degrees in different directions. The “heat” kernels associated to these so-called positive-homogeneous operators are seen to arise naturally as the limits of convolution powers of complex-valued measures, just as the classical heat kernel appears in the central limit theorem. Building on the functional-analytic approach developed by E. B. Davies for higher-order uniformly elliptic operators with measurable coefficients, we formulate a general theory for (anisotropic) self-adjoint variable-coefficient operators, each comparable to a positive-homogeneous operator, and study their associated heat kernels. Specifically, under three abstract hypotheses, we show that the heat kernels satisfy off-diagonal (Gaussian-type) estimates involving the Legendre-Fenchel transform of the operator’s principle symbol. Our results extend those of E. B. Davies and G. Barbatis and partially extend results of A. F. M. ter Elst and D. Robinson.

Keywords: davies method; heat; heat kernel; heat kernels; method heat

Journal Title: Transactions of the American Mathematical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.