LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cell rearrangement induced by filopodial tension accounts for the late phase of convergent extension in the sea urchin archenteron

George Oster was a pioneer in using mechanical models to interrogate morphogenesis in animal embryos. Convergent extension is a particularly important morphogenetic process to which George Oster gave significant attention.… Click to show full abstract

George Oster was a pioneer in using mechanical models to interrogate morphogenesis in animal embryos. Convergent extension is a particularly important morphogenetic process to which George Oster gave significant attention. Late elongation of the sea urchin archenteron is a classic example of convergent extension in a monolayered tube, which has been proposed to be driven by extrinsic axial tension due to the activity of secondary mesenchyme cells. Using a vertex-based mechanical model, we show that key features of archenteron elongation can be accounted for by passive cell rearrangement due to applied tension. The model mimics the cell elongation and the Poisson effect (necking) that occur in actual archenterons. We also show that, as predicted by the model, ablation of secondary mesenchyme cells late in archenteron elongation does not result in extensive elastic recoil. Moreover, blocking the addition of cells to the base of the archenteron late in archenteron elongation leads to excessive cell rearrangement consistent with tension-induced rearrangement of a smaller cohort of cells. Our mechanical simulation suggests that responsive rearrangement can account for key features of archenteron elongation and provides a useful starting point for designing future experiments to examine the mechanical properties of the archenteron.

Keywords: convergent extension; elongation; rearrangement; tension; cell; archenteron

Journal Title: Molecular Biology of the Cell
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.