LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Myosin Light Chain Kinase driven myosin II turnover regulates actin cortex contractility during mitosis.

Photo from wikipedia

Force generation by the molecular motor myosin II (MII) at the actin cortex is a universal feature of animal cells. Despite its central role in driving cell shape changes, the… Click to show full abstract

Force generation by the molecular motor myosin II (MII) at the actin cortex is a universal feature of animal cells. Despite its central role in driving cell shape changes, the mechanisms underlying MII regulation at the actin cortex remain incompletely understood. Here we show that Myosin Light Chain Kinase (MLCK) promotes MII turnover at the mitotic cortex. Inhibition of MLCK resulted in an alteration of the relative levels of phosphorylated Regulatory Light Chain (RLC), with MLCK preferentially creating a short-lived pRLC species and Rho associated kinase (ROCK) preferentially creating a stable ppRLC species during metaphase. Slower turnover of MII and altered RLC homeostasis upon MLCK inhibition correlated with increased cortex tension, driving increased membrane bleb initiation and growth, but reduced bleb retraction during mitosis. Taken together, we show that ROCK and MLCK play distinct roles at the actin cortex during mitosis; ROCK activity is required for recruitment of MII to the cortex, while MLCK activity promotes MII turnover. Our findings support the growing evidence that MII turnover is an essential dynamic process influencing the mechanical output of the actin cortex. [Media: see text].

Keywords: turnover; light chain; myosin; actin cortex; mii

Journal Title: Molecular biology of the cell
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.