Polo-Like-Kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome’s pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells… Click to show full abstract
Polo-Like-Kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome’s pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells (HeLa) and zebrafish embryos in parallel to phylogenic analysis to test the role of a PLK1 binding protein, cenexin, in regulating the PCM. Our studies identify that cenexin is required for tempering microtubule nucleation and that a conserved C-terminal PLK1 binding site between humans and zebrafish is needed for PCM maintenance through mediating PLK1-dependent substrate phosphorylation events. PCM architecture in cenexin-depleted zebrafish embryos was rescued with wild-type human cenexin, but not with a C-terminal cenexin mutant (S796A) deficient in PLK1 binding. We propose a model where cenexin’s C-terminus acts in a conserved manner in eukaryotes, excluding nematodes and arthropods, to anchor PLK1 moderating its potential to phosphorylate PCM substrates required for PCM maintenance and function.
               
Click one of the above tabs to view related content.