LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nucleoli and the nucleoli–centromere association are dynamic during normal development and in cancer

Photo from wikipedia

Centromeres are known to cluster around nucleoli in drosophila and mammalian cells. However, the functional significance of nucleoli-centromere interaction remains underexplored. We hypothesize that if this conserved interaction is functionally… Click to show full abstract

Centromeres are known to cluster around nucleoli in drosophila and mammalian cells. However, the functional significance of nucleoli-centromere interaction remains underexplored. We hypothesize that if this conserved interaction is functionally important, it should be dynamic under different physiological and pathological conditions. We examined the nucleolar structure and centromeres at various differentiation stages using cell culture models. The results show dynamic changes of nucleolar number, area, and nucleoli-centromere interactions at differentiation stages and in cancer cells. Embryonic stem cells usually have a single large nucleolus, which associates with a high percentage of centromeres. As cells differentiate into intermediate states, the nucleolar number increases and the association with centromeres decreases. In terminally differentiated cells, including myotubes, neurons and keratinocytes, the number of nucleoli and their association with centromeres are at the lowest. Cancer cells demonstrate the pattern of nucleoli number and nucleoli-centromere association that is akin to proliferative less differentiated cell types, suggesting that nucleolar reorganization and changes in nucleoli-centromere interactions may help facilitate malignant transformation. This idea is supported in a case of pediatric rhabdomyosarcoma, in which induced differentiation inhibits cell proliferation and reduces nucleolar number and centromere association. These findings suggest active roles of nucleolar structure in centromere function and genome organization critical for cellular function in both normal development and cancer.

Keywords: centromere association; number; nucleoli centromere; cancer; normal development

Journal Title: Molecular Biology of the Cell
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.