LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visualization of the three-dimensional structure of the human centromere in mitotic chromosomes by super-resolution microscopy.

Photo from wikipedia

The human centromere comprises large arrays of repetitive alpha-satellite DNA at the primary constriction of mitotic chromosomes. In addition, centromeres are epigenetically specified by the centromere-specific histone H3 variant CENP-A… Click to show full abstract

The human centromere comprises large arrays of repetitive alpha-satellite DNA at the primary constriction of mitotic chromosomes. In addition, centromeres are epigenetically specified by the centromere-specific histone H3 variant CENP-A that supports kinetochore assembly to enable chromosome segregation. Since CENP-A is bound to only a fraction of the alpha-satellite elements within the megabase-sized centromere DNA, correlating the three-dimensional (3D) organization of alpha-satellite DNA and CENP-A remains elusive. To visualize centromere organization within a single chromatid, we used a combination of the Centromere Chromosome Orientation Fluorescent In Situ Hybridization (Cen-CO-FISH) technique together with Structured Illumination Microscopy (SIM). Cen-CO-FISH allows the differential labeling of the sister chromatids without the denaturation step used in conventional FISH that may affect DNA structure. Our data indicate that alpha-satellite DNA is arranged in a ring-like organization within prometaphase chromosomes, in presence or absence of spindle's microtubules. Using expansion microscopy (ExM), we found that CENP-A organization within mitotic chromosomes follows a rounded pattern similar to that of alpha-satellite DNA, often visible as a ring thicker at the outer surface oriented towards the kinetochore-microtubules interface. Collectively, our data provide a 3D reconstruction of alpha-satellite DNA along with CENP-A clusters that outline the overall architecture of the mitotic centromere. [Media: see text] [Media: see text] [Media: see text] [Media: see text].

Keywords: microscopy; mitotic chromosomes; human centromere; satellite dna; alpha satellite

Journal Title: Molecular biology of the cell
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.