LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dnmt3a is required for the tumor stemness of B16 melanoma cells.

The relationship of carcinogenesis and DNA methyltransferases has attracted extensive attention in tumor research. We reported previously that inhibition of de novo DNA methyltransferase 3a (Dnmt3a) in murine B16 melanoma… Click to show full abstract

The relationship of carcinogenesis and DNA methyltransferases has attracted extensive attention in tumor research. We reported previously that inhibition of de novo DNA methyltransferase 3a (Dnmt3a) in murine B16 melanoma cells significantly suppressed tumor growth and metastasis in xenografted mouse model. Here, we further demonstrated that knockdown of Dnmt3a enhanced the proliferation in anchor-independent conditions of B16 cells, but severely disrupted its multipotent differentiation capacity in vitro. Furthermore, transforming growth factor β1, a key trigger in stem cell differentiation and tumor cell epithelial-mesenchymal transition (EMT), mainly induced apoptosis, but not EMT in Dnmt3a-deficient B16 cells. These data suggested that Dnmt3a is required for maintaining the tumor stemness of B16 cells and it assists B16 cells to escape from death during cell differentiation. Thus it is hypothesized that not only extraordinary self-renewal ability, but also the capacity of multipotent differentiation is necessary for the melanoma tumorigenesis. Inhibition of multipotent differentiation of tumor cells may shed light on the tumor treatment.

Keywords: b16 melanoma; dnmt3a; differentiation; tumor

Journal Title: Acta biochimica et biophysica Sinica
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.