LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Applying Image-Based Food-Recognition Systems on Dietary Assessment: A Systematic Review.

Photo by juanantia from unsplash

Dietary assessment can be crucial for the overall well-being of humans and, at least in some instances, for the prevention and management of chronic, life-threatening diseases. Recall and manual record-keeping… Click to show full abstract

Dietary assessment can be crucial for the overall well-being of humans and, at least in some instances, for the prevention and management of chronic, life-threatening diseases. Recall and manual record-keeping methods for food-intake monitoring are available, but often inaccurate when applied for a long period of time. On the other hand, automatic record-keeping approaches that adopt mobile cameras and computer vision methods seem to simplify the process and can improve current human-centric diet-monitoring methods. Here we present an extended critical literature overview of image-based food-recognition systems (IBFRS) combining a camera of the user's mobile device with computer vision methods and publicly available food datasets (PAFDs). In brief, such systems consist of several phases, such as the segmentation of the food items on the plate, the classification of the food items in a specific food category, and the estimation phase of volume, calories, or nutrients of each food item. A total of 159 studies were screened in this systematic review of IBFRS. A detailed overview of the methods adopted in each of the 78 included studies of this systematic review of IBFRS is provided along with their performance on PAFDs. Studies that included IBFRS without presenting their performance in at least 1 of the above-mentioned phases were excluded. Among the included studies, 45 (58%) studies adopted deep learning methods and especially convolutional neural networks (CNNs) in at least 1 phase of the IBFRS with input PAFDs. Among the implemented techniques, CNNs outperform all other approaches on the PAFDs with a large volume of data, since the richness of these datasets provides adequate training resources for such algorithms. We also present evidence for the benefits of application of IBFRS in professional dietetic practice. Furthermore, challenges related to the IBFRS presented here are also thoroughly discussed along with future directions.

Keywords: ibfrs; food; image based; systematic review; dietary assessment

Journal Title: Advances in nutrition
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.