LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Invited Commentary: Agent-Based Models-Bias in the Face of Discovery.

Photo from academic.microsoft.com

Agent-based models (ABMs) have grown in popularity in epidemiologic applications, but the assumptions necessary for valid inference have only partially been articulated. In this issue, Murray et al. (Am J… Click to show full abstract

Agent-based models (ABMs) have grown in popularity in epidemiologic applications, but the assumptions necessary for valid inference have only partially been articulated. In this issue, Murray et al. (Am J Epidemiol. 2017;186(2):131-142) provided a much-needed analysis of the consequence of some of these assumptions, comparing analysis using an ABM to a similar analysis using the parametric g-formula. In particular, their work focused on the biases that can arise in ABMs that use parameters drawn from distinct populations whose causal structures and baseline outcome risks differ. This demonstration of the quantitative issues that arise in transporting effects between populations has implications not only for ABMs but for all epidemiologic applications, because making use of epidemiologic results requires application beyond a study sample. Broadly, because health arises within complex, dynamic, and hierarchical systems, many research questions cannot be answered statistically without strong assumptions. It will require every tool in our store of methods to properly understand population dynamics if we wish to build an evidence base that is adequate for action. Murray et al.'s results provide insight into these assumptions that epidemiologists can use when selecting a modeling approach.

Keywords: commentary agent; models bias; based models; invited commentary; agent based

Journal Title: American journal of epidemiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.