BACKGROUND Hydrogen sulfide (H2S) is widely distributed throughout the nervous system with various antioxidant and anti-inflammatory properties. Hypertension involves an increase in reactive oxygen species (ROS) and inflammation in the… Click to show full abstract
BACKGROUND Hydrogen sulfide (H2S) is widely distributed throughout the nervous system with various antioxidant and anti-inflammatory properties. Hypertension involves an increase in reactive oxygen species (ROS) and inflammation in the hypothalamic paraventricular nucleus (PVN). However, it is unclear how H2S in PVN affects hypertension. METHODS Our study used spontaneously hypertensive rats (SHR) and control Wistar Kyoto (WKY) rats, microinjected with Adenovirus-Associated Virus (AAV)-CBS (cystathionine beta-synthase overexpression) or AAV-ZsGreeen in bilateral PVN, or simultaneously injected with virus-carrying nuclear factor erythroid 2-related factor 2 (Nrf2)-shRNA for 4w. Blood pressure and plasma noradrenaline level were detected, and the PVN was collected. Finally, levels of CBS, H2S, Nrf2, Fra-LI, ROS, gp91 phox, p47 phox, superoxide dismutase 1, interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α, tyrosine hydroxylase and glutamate decarboxylase 67 were measured. RESULTS We found that AAV-CBS increased H2S in the PVN, and blood pressure, neuronal activation, oxidative stress, and inflammation of PVN were substantially reduced. Furthermore, endogenous H2S in the PVN activated Nrf2 and corrected the PVN's imbalance of excitatory and inhibitory neurotransmitters. However, Nrf2 knockdown in the PVN was similarly observed to abolish the beneficial effect of H2S on hypertension. CONCLUSIONS The findings imply that endogenous H2S in SHR PVN is reduced, and PVN endogenous H2S can alleviate hypertension via Nrf2-mediated antioxidant and anti-inflammatory effects.
               
Click one of the above tabs to view related content.