LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantification of Carbon Nanotubes by Raman Analysis

Photo from wikipedia

The increasing prevalence of carbon nanotubes (CNTs) in manufacturing and research environments, together with the potential exposure risks, necessitates development of reliable and accurate monitoring methods for these materials. We… Click to show full abstract

The increasing prevalence of carbon nanotubes (CNTs) in manufacturing and research environments, together with the potential exposure risks, necessitates development of reliable and accurate monitoring methods for these materials. We examined quantification of CNTs by two distinct methods based on Raman spectroscopy. First, as measured by the Raman peak intensity of aqueous CNT suspensions, and second, by Raman mapping of air filter surfaces onto which CNTs were collected as aerosols or applied as small-area (0.05 cm2) deposits. Correlation (R2 = 0.97) between CNT concentration and Raman scattering intensity for suspensions in cuvettes was found over a concentration range from about 2 to 10 µg/ml, but measurement variance precludes practical determination of a calibration curve. Raman mapping of aerosol sample filter surfaces shows correlation with CNT mass when the surface density is relatively high (R2 = 0.83 and 0.95 above about 5 µg total mass on filter), while heterogeneity of CNT deposition makes obtaining representative maps of lower density samples difficult. This difficulty can be mitigated by increasing the area mapped relative to the total sample area, improving both precision and the limit of detection (LOD). For small-area deposits, detection of low masses relevant to occupational monitoring can be achieved, with an estimated LOD of about 50 ng.

Keywords: quantification carbon; raman; carbon nanotubes; area

Journal Title: Annals of Work Exposures and Health
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.