LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Allometric scaling of biomass with nitrogen and phosphorus above- and below-ground in herbaceous plants varies along water-salinity gradients

Photo from wikipedia

Abstract Biomass allocation affects the ability of plants to acquire resources and nutrients; a limited allocation of nutrients, such as nitrogen and phosphorus, affects ecological processes. However, little research has… Click to show full abstract

Abstract Biomass allocation affects the ability of plants to acquire resources and nutrients; a limited allocation of nutrients, such as nitrogen and phosphorus, affects ecological processes. However, little research has been conducted on how plant allocation patterns change and on the trade-offs involved in allocation strategies when microhabitat gradients exist. We selected a 3.6 km transect in the Ebinur Lake Wetland Natural Reserve of Xinjiang, China, to investigate the relationships between plant traits (biomass and N and P concentrations) of herbaceous plants and environmental factors (soil moisture, salinity and nutrient content), and to determine the allometric scaling of biomass and stoichiometric traits between the above- and below-ground plant parts. The results show that the biomass and stoichiometric traits of plants reflected both the change of micro-environment and the natural characteristics of plants. With a decrease of the soil water availability and salinity, above- and below-ground N and P concentrations decrease gradually; scaling relationships exist between above- and below-ground plant parts, for biomass and N and P concentrations. Biomass allocation is influenced by soil nutrient ratios, and the allocation strategy tended to be conserved for N and variable for P. Second, the scaling relationships also show interspecific differences; all scaling exponents of Suaeda prostrata are larger than for other species and indicate a ‘tolerance’ strategy, while other species tend to increase the below-ground biomass and N and P concentrations, i.e. a ‘capture’ strategy.

Keywords: ground; allocation; biomass; herbaceous plants; nitrogen phosphorus; salinity

Journal Title: AoB Plants
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.