LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A member of the CONSTANS-Like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation

Photo from wikipedia

Abstract A feature of the physiological adaptation to spaceflight in Arabidopsis thaliana (Arabidopsis) is the induction of reactive oxygen species (ROS)-associated gene expression. The patterns of ROS-associated gene expression vary… Click to show full abstract

Abstract A feature of the physiological adaptation to spaceflight in Arabidopsis thaliana (Arabidopsis) is the induction of reactive oxygen species (ROS)-associated gene expression. The patterns of ROS-associated gene expression vary among Arabidopsis ecotypes, and the role of ROS signalling in spaceflight acclimation is unknown. What could differences in ROS gene regulation between ecotypes on orbit reveal about physiological adaptation to novel environments? Analyses of ecotype-dependent responses to spaceflight resulted in the elucidation of a previously uncharacterized gene (OMG1) as being ROS-associated. The OMG1 5′ flanking region is an active promoter in cells where ROS activity is commonly observed, such as in pollen tubes, root hairs, and in other tissues upon wounding. qRT-PCR analyses revealed that upon wounding on Earth, OMG1 is an apparent transcriptional regulator of MYB77 and GRX480, which are associated with the ROS pathway. Fluorescence-based ROS assays show that OMG1 affects ROS production. Phylogenetic analysis of OMG1 and closely related homologs suggests that OMG1 is a distant, unrecognized member of the CONSTANS-Like protein family, a member that arose via gene duplication early in the angiosperm lineage and subsequently lost its first DNA-binding B-box1 domain. These data illustrate that members of the rapidly evolving COL protein family play a role in regulating ROS pathway functions, and their differential regulation on orbit suggests a role for ROS signalling in spaceflight physiological adaptation.

Keywords: protein family; physiological adaptation; member; adaptation; gene

Journal Title: AoB Plants
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.