Understanding how animals respond to and cope with variation in ambient temperature is an important priority. The reason for this is that ambient temperature is a key component of the… Click to show full abstract
Understanding how animals respond to and cope with variation in ambient temperature is an important priority. The reason for this is that ambient temperature is a key component of the physical environment that influences offspring performance in a wide range of ectotherms and endotherms. Here, we investigate whether posthatching parental care provides a behavioral mechanism for buffering against the effects of ambient temperature on offspring in the burying beetle Nicrophorus vespilloides. We used a 3 × 2 factorial design where we manipulated ambient temperature (15, 20, or 25 °C) and parental care (presence or absence of a female parent after hatching). We found that the effect of ambient temperature on offspring performance was conditional upon the presence or absence of a caring female. Fewer larvae survived in the absence than in the presence of a caring female at 15 °C while there was no difference in larval survival at 20 and 25 °C. Our results show that parental care buffers against some of the detrimental effects of variation in ambient temperature on offspring. We suggest that posthatching parental care may buffer against such effects by creating a more benign environment or by boosting offspring resilience toward stressors. Our results have important implications for our understanding of the evolution of parental care because they suggest that the evolution of parental care could allow species to expand their geographical range to colonize areas with harsher climatic conditions than they otherwise would tolerate.
               
Click one of the above tabs to view related content.