LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-dimensional variable selection for ordinal outcomes with error control

Photo by strong18philip from unsplash

Many high-throughput genomic applications involve a large set of potential covariates and a response which is frequently measured on an ordinal scale, and it is crucial to identify which variables… Click to show full abstract

Many high-throughput genomic applications involve a large set of potential covariates and a response which is frequently measured on an ordinal scale, and it is crucial to identify which variables are truly associated with the response. Effectively controlling the false discovery rate (FDR) without sacrificing power has been a major challenge in variable selection research. This study reviews two existing variable selection frameworks, model-X knockoffs and a modified version of reference distribution variable selection (RDVS), both of which utilize artificial variables as benchmarks for decision making. Model-X knockoffs constructs a 'knockoff' variable for each covariate to mimic the covariance structure, while RDVS generates only one null variable and forms a reference distribution by performing multiple runs of model fitting. Herein, we describe how different importance measures for ordinal responses can be constructed that fit into these two selection frameworks, using either penalized regression or machine learning techniques. We compared these measures in terms of the FDR and power using simulated data. Moreover, we applied these two frameworks to high-throughput methylation data for identifying features associated with the progression from normal liver tissue to hepatocellular carcinoma to further compare and contrast their performances.

Keywords: high dimensional; ordinal outcomes; selection; selection ordinal; variable selection; dimensional variable

Journal Title: Briefings in bioinformatics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.