Advances in the prediction of the inter-residue distance for a protein sequence have increased the accuracy to predict the correct folds of proteins with distance information. Here, we propose a… Click to show full abstract
Advances in the prediction of the inter-residue distance for a protein sequence have increased the accuracy to predict the correct folds of proteins with distance information. Here, we propose a distance-guided protein folding algorithm based on generalized descent direction, named GDDfold, which achieves effective structural perturbation and potential minimization in two stages. In the global stage, random-based direction is designed using evolutionary knowledge, which guides conformation population to cross potential barriers and explore conformational space rapidly in a large range. In the local stage, locally rugged potential landscape can be explored with the aid of conjugate-based direction integrated into a specific search strategy, which can improve the exploitation ability. GDDfold is tested on 347 proteins of a benchmark set, 24 template-free modeling (FM) approaches targets of CASP13 and 20 FM targets of CASP14. Results show that GDDfold correctly folds [template modeling (TM) score ≥ = 0.5] 316 out of 347 proteins, where 65 proteins have TM scores that are greater than 0.8, and significantly outperforms Rosetta-dist (distance-assisted fragment assembly method) and L-BFGSfold (distance geometry optimization method). On CASP FM targets, GDDfold is comparable with five state-of-the-art full-version methods, namely, Quark, RaptorX, Rosetta, MULTICOM and trRosetta in the CASP 13 and 14 server groups.
               
Click one of the above tabs to view related content.