LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep latent space fusion for adaptive representation of heterogeneous multi-omics data

Photo by joelfilip from unsplash

The integration of multi-omics data makes it possible to understand complex biological organisms at the system level. Numerous integration approaches have been developed by assuming a common underlying data space.… Click to show full abstract

The integration of multi-omics data makes it possible to understand complex biological organisms at the system level. Numerous integration approaches have been developed by assuming a common underlying data space. Due to the noise and heterogeneity of biological data, the performance of these approaches is greatly affected. In this work, we propose a novel deep neural network architecture, named Deep Latent Space Fusion (DLSF), which integrates the multi-omics data by learning consistent manifold in the sample latent space for disease subtypes identification. DLSF is built upon a cycle autoencoder with a shared self-expressive layer, which can naturally and adaptively merge nonlinear features at each omics level into one unified sample manifold and produce adaptive representation of heterogeneous samples at the multi-omics level. We have assessed DLSF on various biological and biomedical datasets to validate its effectiveness. DLSF can efficiently and accurately capture the intrinsic manifold of the sample structures or sample clusters compared with other state-of-the-art methods, and DLSF yielded more significant outcomes for biological significance, survival prognosis and clinical relevance in application of cancer study in The Cancer Genome Atlas. Notably, as a deep case study, we determined a new molecular subtype of kidney renal clear cell carcinoma that may benefit immunotherapy in the viewpoint of multi-omics, and we further found potential subtype-specific biomarkers from multiple omics data, which were validated by independent datasets. In addition, we applied DLSF to identify potential therapeutic agents of different molecular subtypes of chronic lymphocytic leukemia, demonstrating the scalability of DLSF in diverse omics data types and application scenarios.

Keywords: multi omics; latent space; dlsf; omics data

Journal Title: Briefings in bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.