LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A tool for feature extraction from biological sequences

Photo from wikipedia

With the advances in sequencing technologies, a huge amount of biological data is extracted nowadays. Analyzing this amount of data is beyond the ability of human beings, creating a splendid… Click to show full abstract

With the advances in sequencing technologies, a huge amount of biological data is extracted nowadays. Analyzing this amount of data is beyond the ability of human beings, creating a splendid opportunity for machine learning methods to grow. The methods, however, are practical only when the sequences are converted into feature vectors. Many tools target this task including iLearnPlus, a Python-based tool which supports a rich set of features. In this paper, we propose a holistic tool that extracts features from biological sequences (i.e. DNA, RNA and Protein). These features are the inputs to machine learning models that predict properties, structures or functions of the input sequences. Our tool not only supports all features in iLearnPlus but also 30 additional features which exist in the literature. Moreover, our tool is based on R language which makes an alternative for bioinformaticians to transform sequences into feature vectors. We have compared the conversion time of our tool with that of iLearnPlus: we transform the sequences much faster. We convert small nucleotides by a median of 2.8X faster, while we outperform iLearnPlus by a median of 6.3X for large sequences. Finally, in amino acids, our tool achieves a median speedup of 23.9X.

Keywords: tool; biological sequences; feature extraction; sequences tool; tool feature

Journal Title: Briefings in bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.