LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ViBE: a hierarchical BERT model to identify eukaryotic viruses using metagenome sequencing data

Photo by thinkmagically from unsplash

Viruses are ubiquitous in humans and various environments and continually mutate themselves. Identifying viruses in an environment without cultivation is challenging; however, promoting the screening of novel viruses and expanding… Click to show full abstract

Viruses are ubiquitous in humans and various environments and continually mutate themselves. Identifying viruses in an environment without cultivation is challenging; however, promoting the screening of novel viruses and expanding the knowledge of viral space is essential. Homology-based methods that identify viruses using known viral genomes rely on sequence alignments, making it difficult to capture remote homologs of the known viruses. To accurately capture viral signals from metagenomic samples, models are needed to understand the patterns encoded in the viral genomes. In this study, we developed a hierarchical BERT model named ViBE to detect eukaryotic viruses from metagenome sequencing data and classify them at the order level. We pre-trained ViBE using read-like sequences generated from the virus reference genomes and derived three fine-tuned models that classify paired-end reads to orders for eukaryotic deoxyribonucleic acid viruses and eukaryotic ribonucleic acid viruses. ViBE achieved higher recall than state-of-the-art alignment-based methods while maintaining comparable precision. ViBE outperformed state-of-the-art alignment-free methods for all test cases. The performance of ViBE was also verified using real sequencing datasets, including the vaginal virome.

Keywords: metagenome sequencing; bert model; sequencing data; viruses using; hierarchical bert; eukaryotic viruses

Journal Title: Briefings in bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.