LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NASMDR: a framework for miRNA-drug resistance prediction using efficient neural architecture search and graph isomorphism networks

Photo from wikipedia

As a frontier field of individualized therapy, microRNA (miRNA) pharmacogenomics facilitates the understanding of different individual responses to certain drugs and provides a reasonable reference for clinical treatment. However, the… Click to show full abstract

As a frontier field of individualized therapy, microRNA (miRNA) pharmacogenomics facilitates the understanding of different individual responses to certain drugs and provides a reasonable reference for clinical treatment. However, the known drug resistance-associated miRNAs are not yet sufficient to support precision medicine. Although existing methods are effective, they all focus on modelling miRNA-drug resistance interaction graphs, making their performance bounded by the interaction density. In this study, we propose a framework for miRNA-drug resistance prediction through efficient neural architecture search and graph isomorphism networks (NASMDR). NASMDR uses attribute information instead of the commonly used interactive graph information. In the cross-validation experiment, the proposed framework can achieve an AUC of 0.9468 on the ncDR dataset, which is 2.29% higher than the state-of-the-art method. In addition, we propose a novel sequence characterization approach, k-mer Sparse Nonnegative Matrix Factorization (KSNMF). The results show that NASMDR provides novel insights for integrating efficient neural architecture search and graph isomorphic networks into a unified framework to predict drug resistance-related miRNAs. The codes for NASMDR are available at https://github.com/kaizheng-academic/NASMDR.

Keywords: efficient neural; graph; mirna drug; drug; drug resistance

Journal Title: Briefings in bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.