LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep learning joint models for extracting entities and relations in biomedical: a survey and comparison

Photo by neonbrand from unsplash

The rapid development of biomedicine has produced a large number of biomedical written materials. These unstructured text data create serious challenges for biomedical researchers to find information. Biomedical named entity… Click to show full abstract

The rapid development of biomedicine has produced a large number of biomedical written materials. These unstructured text data create serious challenges for biomedical researchers to find information. Biomedical named entity recognition (BioNER) and biomedical relation extraction (BioRE) are the two most fundamental tasks of biomedical text mining. Accurately and efficiently identifying entities and extracting relations have become very important. Methods that perform two tasks separately are called pipeline models, and they have shortcomings such as insufficient interaction, low extraction quality and easy redundancy. To overcome the above shortcomings, many deep learning-based joint name entity recognition and relation extraction models have been proposed, and they have achieved advanced performance. This paper comprehensively summarize deep learning models for joint name entity recognition and relation extraction for biomedicine. The joint BioNER and BioRE models are discussed in the light of the challenges existing in the BioNER and BioRE tasks. Five joint BioNER and BioRE models and one pipeline model are selected for comparative experiments on four biomedical public datasets, and the experimental results are analyzed. Finally, we discuss the opportunities for future development of deep learning-based joint BioNER and BioRE models.

Keywords: bioner; entity recognition; relation extraction; bioner biore; deep learning

Journal Title: Briefings in bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.