LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning

Photo from wikipedia

Differentiating cancer subtypes is crucial to guide personalized treatment and improve the prognosis for patients. Integrating multi-omics data can offer a comprehensive landscape of cancer biological process and provide promising… Click to show full abstract

Differentiating cancer subtypes is crucial to guide personalized treatment and improve the prognosis for patients. Integrating multi-omics data can offer a comprehensive landscape of cancer biological process and provide promising ways for cancer diagnosis and treatment. Taking the heterogeneity of different omics data types into account, we propose a hierarchical multi-kernel learning (hMKL) approach, a novel cancer molecular subtyping method to identify cancer subtypes by adopting a two-stage kernel learning strategy. In stage 1, we obtain a composite kernel borrowing the cancer integration via multi-kernel learning (CIMLR) idea by optimizing the kernel parameters for individual omics data type. In stage 2, we obtain a final fused kernel through a weighted linear combination of individual kernels learned from stage 1 using an unsupervised multiple kernel learning method. Based on the final fusion kernel, k-means clustering is applied to identify cancer subtypes. Simulation studies show that hMKL outperforms the one-stage CIMLR method when there is data heterogeneity. hMKL can estimate the number of clusters correctly, which is the key challenge in subtyping. Application to two real data sets shows that hMKL identified meaningful subtypes and key cancer-associated biomarkers. The proposed method provides a novel toolkit for heterogeneous multi-omics data integration and cancer subtypes identification.

Keywords: multi omics; kernel learning; multi kernel; multi; cancer; omics data

Journal Title: Briefings in bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.