LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CasANGCL: pre-training and fine-tuning model based on cascaded attention network and graph contrastive learning for molecular property prediction

Photo from wikipedia

MOTIVATION Molecular property prediction is a significant requirement in AI-driven drug design and discovery, aiming to predict the molecular property information (e.g. toxicity) based on the mined biomolecular knowledge. Although… Click to show full abstract

MOTIVATION Molecular property prediction is a significant requirement in AI-driven drug design and discovery, aiming to predict the molecular property information (e.g. toxicity) based on the mined biomolecular knowledge. Although graph neural networks have been proven powerful in predicting molecular property, unbalanced labeled data and poor generalization capability for new-synthesized molecules are always key issues that hinder further improvement of molecular encoding performance. RESULTS We propose a novel self-supervised representation learning scheme based on a Cascaded Attention Network and Graph Contrastive Learning (CasANGCL). We design a new graph network variant, designated as cascaded attention network, to encode local-global molecular representations. We construct a two-stage contrast predictor framework to tackle the label imbalance problem of training molecular samples, which is an integrated end-to-end learning scheme. Moreover, we utilize the information-flow scheme for training our network, which explicitly captures the edge information in the node/graph representations and obtains more fine-grained knowledge. Our model achieves an 81.9% ROC-AUC average performance on 661 tasks from seven challenging benchmarks, showing better portability and generalizations. Further visualization studies indicate our model's better representation capacity and provide interpretability.

Keywords: attention network; cascaded attention; network; molecular property

Journal Title: Briefings in bioinformatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.