Gaussian graphical model is a strong tool for identifying interactions from metabolomics data based on conditional correlation. However, data may be collected from different stages or subgroups of subjects with… Click to show full abstract
Gaussian graphical model is a strong tool for identifying interactions from metabolomics data based on conditional correlation. However, data may be collected from different stages or subgroups of subjects with heterogeneity or hierarchical structure. There are different integrating strategies of graphical models for multi-group data proposed by data scientists. It is challenging to select the methods for metabolism data analysis. This study aimed to evaluate the performance of several different integrating graphical models for multi-group data and provide support for the choice of strategy for similar characteristic data. We compared the performance of seven methods in estimating graph structures through simulation study. We also applied all the methods in breast cancer metabolomics data grouped by stages to illustrate the real data application. The method of Shaddox et al. achieved the highest average area under the receiver operating characteristic curve and area under the precision-recall curve across most scenarios, and it was the only approach with all indicators ranked at the top. Nevertheless, it also cost the most time in all settings. Stochastic search structure learning tends to result in estimates that focus on the precision of identified edges, while BEAM, hierarchical Bayesian approach and birth-death Markov chain Monte Carlo may identify more potential edges. In the real metabolomics data analysis from three stages of breast cancer patients, results were in line with that in simulation study.
               
Click one of the above tabs to view related content.