LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Systematic evaluation of differential splicing tools for RNA-seq studies

Photo from wikipedia

Abstract Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have… Click to show full abstract

Abstract Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.

Keywords: event based; differential splicing; rna seq; systematic evaluation; based methods; exon based

Journal Title: Briefings in Bioinformatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.