LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

EvoLSTM: context-dependent models of sequence evolution using a sequence-to-sequence LSTM

Photo by bradyn from unsplash

Abstract Motivation Accurate probabilistic models of sequence evolution are essential for a wide variety of bioinformatics tasks, including sequence alignment and phylogenetic inference. The ability to realistically simulate sequence evolution… Click to show full abstract

Abstract Motivation Accurate probabilistic models of sequence evolution are essential for a wide variety of bioinformatics tasks, including sequence alignment and phylogenetic inference. The ability to realistically simulate sequence evolution is also at the core of many benchmarking strategies. Yet, mutational processes have complex context dependencies that remain poorly modeled and understood. Results We introduce EvoLSTM, a recurrent neural network-based evolution simulator that captures mutational context dependencies. EvoLSTM uses a sequence-to-sequence long short-term memory model trained to predict mutation probabilities at each position of a given sequence, taking into consideration the 14 flanking nucleotides. EvoLSTM can realistically simulate mammalian and plant DNA sequence evolution and reveals unexpectedly strong long-range context dependencies in mutation probabilities. EvoLSTM brings modern machine-learning approaches to bear on sequence evolution. It will serve as a useful tool to study and simulate complex mutational processes. Availability and implementation Code and dataset are available at https://github.com/DongjoonLim/EvoLSTM. Supplementary information Supplementary data are available at Bioinformatics online.

Keywords: sequence sequence; evolution; context dependencies; sequence evolution; models sequence; sequence

Journal Title: Bioinformatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.