LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting correlated outcomes from molecular data.

Photo from wikipedia

MOTIVATION Multivariate (multi-target) regression has the potential to outperform univariate (single-target) regression at predicting correlated outcomes, which frequently occur in biomedical and clinical research. Here we implement multivariate lasso and… Click to show full abstract

MOTIVATION Multivariate (multi-target) regression has the potential to outperform univariate (single-target) regression at predicting correlated outcomes, which frequently occur in biomedical and clinical research. Here we implement multivariate lasso and ridge regression using stacked generalisation. RESULTS Our flexible approach leads to predictive and interpretable models in high-dimensional settings, with a single estimate for each input-output effect. In the simulation, we compare the predictive performance of several state-of-the-art methods for multivariate regression. In the application, we use clinical and genomic data to predict multiple motor and non-motor symptoms in Parkinson's disease patients. We conclude that stacked multivariate regression, with our adaptations, is a competitive method for predicting correlated outcomes. AVAILABILITY AND IMPLEMENTATION The R package joinet is available on GitHub (https://github.com/rauschenberger/joinet) and cran (https://cran.r-project.org/package=joinet). SUPPLEMENTARY INFORMATION Supplementary tables and figures are available at Bioinformatics online.

Keywords: regression; molecular data; correlated outcomes; multivariate; predicting correlated; outcomes molecular

Journal Title: Bioinformatics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.