LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

springD2A: capturing uncertainty in disease-drug association prediction with model integration

Photo from wikipedia

MOTIVATION Drug repositioning that aims to find new indications for existing drugs has been an efficient strategy for drug discovery. In the scenario where we only have confirmed disease-drug associations… Click to show full abstract

MOTIVATION Drug repositioning that aims to find new indications for existing drugs has been an efficient strategy for drug discovery. In the scenario where we only have confirmed disease-drug associations as positive pairs, a negative set of disease-drug pairs is usually constructed from the unknown disease-drug pairs in previous studies, where we do not know whether drugs and diseases can be associated, to train a model for disease-drug association prediction (drug repositioning). Drugs and diseases in these negative pairs can potentially be associated, but most studies have ignored them. RESULTS We present a method, springD2A, to capture the uncertainty in the negative pairs, and to discriminate between positive and unknown pairs because the former are more reliable. In springD2A, we introduce a spring-like penalty for the loss of negative pairs, which is strong if they are too close in a unit sphere, but mild if they are at a moderate distance. We also design a sequential sampling in which the probability of an unknown disease-drug pair sampled as negative is proportional to its score predicted as positive. Multiple models are learned during sequential sampling, and we adopt parameter- and feature-based ensemble schemes to boost performance. Experiments show springspringD2A is an effective tool for drug-repositioning. AVAILABILITY A python implementation of springD2A and datasets used in this study are available at https://github.com/wangyuanhao/springD2A. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Keywords: disease drug; drug association; drug; model; association prediction

Journal Title: Bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.