LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

fastISM: Performant in-silico saturation mutagenesis for convolutional neural networks.

Photo from wikipedia

MOTIVATION Deep learning models such as convolutional neural networks are able to accurately map biological sequences to associated functional readouts and properties by learning predictive de novo representations. In-silico saturation… Click to show full abstract

MOTIVATION Deep learning models such as convolutional neural networks are able to accurately map biological sequences to associated functional readouts and properties by learning predictive de novo representations. In-silico saturation mutagenesis (ISM) is a popular feature attribution technique for inferring contributions of all characters in an input sequence to the model's predicted output. The main drawback of ISM is its runtime, as it involves multiple forward propagations of all possible mutations of each character in the input sequence through the trained model to predict the effects on the output. RESULTS We present fastISM, an algorithm that speeds up ISM by a factor of over 10x for commonly used convolutional neural network architectures. fastISM is based on the observations that the majority of computation in ISM is spent in convolutional layers, and a single mutation only disrupts a limited region of intermediate layers, rendering most computation redundant. fastISM reduces the gap between backpropagation-based feature attribution methods and ISM. It far surpasses the runtime of backpropagation-based methods on multi-output architectures, making it feasible to run ISM on a large number of sequences. AVAILABILITY An easy-to-use Keras/TensorFlow 2 implementation of fastISM is available at https://github.com/kundajelab/fastISM. fastISM can be installed using pip install fastism. A hands-on tutorial can be found at https://colab.research.google.com/github/kundajelab/fastISM/blob/master/notebooks/colab/DeepSEA.ipynb. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Keywords: saturation mutagenesis; neural networks; fastism; convolutional neural; ism; silico saturation

Journal Title: Bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.